تبلیغات
یك معلم ریاضی - مطالب مسائل جالب ریاضی
 
یك معلم ریاضی
ریاضی برای زندگی
درباره وبلاگ


به نام خدا
به وبلاگ شخصی من خوش آمدید.
سجاد خسروپور هستم، کارشناس آموزش ریاضی، کارشناس ارشد تکنولوژی آموزشی ، دبیر رسمی و سرگروه رشته ریاضی مقطع متوسطه اول آموزش و پرورش شهرستان لاهیجان.
قصد دارم در این وبلاگ علاوه بر ریاضیات و تکنولوژی آموزشی که رشته شغلی و تحصیلی من هستند مطالب دیگری که به آن ها علاقه دارم و فکر می کنم که به درد خیلی ها میخوره قرار بدم.
امیدوارم که با نظراتتون به من کمک کنید تا وبلاگ بهتر و مفیدتری داشته باشم.

آدرس های دیگر وبلاگ:

www.1moallem.ir

www.1moallem.sub.ir

تدریس خصوصی ریاضیات در شهرستان لاهیجان:

09025559909

اللهم عجل لولیک الفرج

مدیر وبلاگ : سجاد خسروپور
نویسندگان
نظرسنجی
آیا آموزش و پرورش ما موفق است . اگر خیر به کدام یک از دلایل زیر؟










قواعد بخش پذیری بر اعداد طبیعی

برای تقسیم بر بیشتر  اعداد طبیعی قاعده هایی وجود دارد. حتی برای برخی از اعداد بیشتر از سه قاعده به دست آمده است که می توان به کمک آن ها بخش پذیری اعداد را بررسی کرد و باقی مانده ه تقسیم آن ها را نیز تعیین نمود. البته در برخی موارد انجام عمل تقسیم، راحت تر از کاربرد قاعده به نظر می رسد. این به مقسوم و مقسوم علیه بستگی دارد. قاعده تقسیم بر اعداد طبیعی از 1 تا ۱۵ در زیر آورده شده است.

 

قاعده تقسیم بر 1 :  

همه ی اعداد بر یک بخش پذیر هستند.

قاعده تقسیم بر 2 :

عددی بر 2 بخش پذیر است که رقم یکانش بر 2 بخش پذیر باشد. باقی مانده تقسیم هرعدد بر 2 باقی مانده تقسیم رقم یکان عدد بر 2 است.

مثال- همه ی اعداد زوج بر 2 بخش پذیر هستند.

قاعده تقسیم بر 3 :

عددی بر 3 بخش پذیر است که مجموع ارقامش بر 3 بخش پذیر باشد. باقی مانده ی تقسیم عدد بر 3 همان باقی مانده تقسیم مجموع ارقام آن عدد بر 3 است.

مثال- مجموع رقم های عدد 7۵12 برابر 1۵ است و 1۵ بر 3 بخش پذیر می باشد، بنابراین عدد7۵12 بر 3 بخش پذیر است.

قاعده تقسیم بر 4 :

الف) عددی بر 4 قابل قسمت است که دو رقم سمت راست آن بر4 قابل قسمت باشد. باقی مانده تقسیم هر عدد بر 4 مساوی باقی مانده تقسیم دو رقم سمت راست آن عدد بر4 .

مثال- عدد ۵248 بر 4 بخش پذیر است. زیرا 48 بر 4 بخش پذیر است.

ب)عددی بر4 بخش پذیر است که رقم یکان به اضافه ی 2 برابر رقم دهگان آن بر 4 بخش پذیر باشد.

مثال- عدد 1۵68 بر 4 بخش پذیر است. زیرا 20 = 8 + 6 * 2 و 20 بر 4 بخش پذیر می باشد.

قاعده تقسیم بر 5 : 

عددی بر۵بخش پذیر است که رقم یکانش بر۵ بخش پذیر باشد. باقی مانده تقسیم هرعدد بر۵ باقی مانده تقسیم رقم یکان عدد بر ۵ است.

مثال- اعداد ۶۵،  240 و 800  بر۵ بخش پذیر هستند.

قاعده تقسیم بر 6 :

عددی بر 6 بخش پذیر است که  بر2 و3 بخش پذیر باشد. ( 3 * 2 = 6)

مثال- عدد 132 هم بر 2 و هم بر 3 بخش پذیراست. پس بر6 نیز بخش پذیر است.

قاعده تقسیم بر 7 :

عددی بر 7 بخش پذیر است که اگر 2 برابر رقم یکان آن را از عددی که از حذف یکان به دست آمده کم کنیم، حاصل بر7 بخش پذیر باشد.(در صورت لزوم این عمل را چندین بار تکرار می کنیم تا به نتیجه برسیم.)

مثال- عدد ۵194 بر 7 بخش پذیر است. زیرا:         

( 8 = 2 * 4)                            5194

                                                                         ( 2= 2 *1)              511  = 8 – 519

                                                                                             49 = 2- 51

49 مضربی از 7 است. بنابراین۵۱۹۴ بر 7 بخش پذیر است.

قاعده تقسیم بر 8 :

الف) عددی بر8  قابل قسمت است که سه رقم سمت راست آن بر 8 قابل قسمت باشد.

مثال- اعداد 4۵000 و706۵6 بر 8 بخش پذیرهستند. زیرا سه رقم سمت راست آن ها یعنی صفر و6۵6 بر 8 بخش پذیرهستند.

ب) عددی بر8 بخش پذیر است که 2 برابررقم دهگان به اضافه ی 4 برابر رقم صدگان آن بر 8 بخش پذیر باشد.

مثال- عدد 6۵321 بر 8 بخش پذیر است. زیرا 16 = 2 * 2 + 3 * 4 و 16 بر 8 بخش پذیر می باشد.

قاعده تقسیم بر 9 :

عددی بر 9 بخش پذیراست که مجموع ارقامش بر9 بخش پذیر باشد. باقی مانده تقسیم عدد بر9 همان باقی مانده تقسیم مجموع ارقام آن عدد بر9 است.

مثال- عدد ۵148 بر 9 بخش پذیراست. زیرا مجموع رقم های آن یعنی 18 بر 9 بخش پذیر است.

قاعده تقسیم بر 10 :

 عددی بر 10 بخش پذیر است که رقم یکان آن صفر باشد.

مثال- اعداد 70  ، 1200 و  810  بر 10 بخش پذیر هستند.

قاعده تقسیم بر 11 :

عددی بر 11 بخش پذیر است که اگر ارقام آن را یکی در میان به دو دسته تقسیم کنیم و مجموع ارقام هر دسته را به دست آوریم و سپس دو عدد به دست آمده را از هم کم کنیم عدد حاصل بر 11 بخش پذیر باشد.

مثال-عدد ۵240312 بر 11 بخش پذیر است زیرا:

14 = 2 + 3 + 4 + 5

3 = 1 + 0 + 2

11 = 3 - 14

قاعده تقسیم بر 12 :

عددی بر 12 بخش پذیر است که بر 3 و 4 بخش پذیر باشد.

مثال- اعداد 72 و  120  و 480 بر 12 بخش پذیر هستند.

قاعده تقسیم بر 13 :

عددی بر 13 بخش پذیر است که اگر 4 برابر رقم یکان آن را با عددی که از حذف یکان به دست آمده جمع کنیم، حاصل بر 13 بخش پذیرباشد. (در صورت لزوم این عمل را چندین بار تکرار می کنیم تا به نتیجه برسیم.)

مثال- عدد 247 بر 13 بخش پذیر است. زیرا:

         ( 28 = 7 * 4)                             247

( 8 = 2 * 4)               52 = 28 + 24

13 = 8 + 5

قاعده تقسیم بر 14 :

عددی بر 14 بخش پذیر است که   بر 2 و 7 بخش پذیر باشد. ( 7 * 2 =  14)

مثال- عدد 3۵42 هم بر 2 وهم بر7 بخش پذیر است. پس بر 14 نیز بخش پذیر است.

قاعده تقسیم بر 15 :

عددی بر 1۵ بخش پذیر است که بر 3 و 5 بخش پذیر باشد. ( ۵ * 3 = 1۵)

مثال- عدد 43۵0 هم بر 3 و هم بر 5 بخش پذیر است. پس بر 43۵0 نیز بخش پذیر است.

 





نوع مطلب : مسائل جالب ریاضی، مقالات، مطالب جالب ریاضی، 
برچسب ها : قواعد بخش پذیری بر اعداد طبیعی،
لینک های مرتبط :
1388/09/19 :: نویسنده : سجاد خسروپور

نگاهی به کاربرد مفاهیم ساده ریاضی در زندگی روزمره

 

سال ها پیش در یکی از کلاس های ریاضیات مدارس آلمان، آموزگار برای اینکه مدتی بچه ها را سرگرم کند و به کارش برسد؛ از آنها خواست تا مجموع اعداد از یک تا صد را حساب کنند. پس از چند دقیقه یکی از شاگردان کلاس گفت: مجموع این اعداد را پیدا کرده و حاصل عدد ۵۰۵۰ می شود. با شنیدن این عدد معلم با حیرت فراوان او را به پای تخته برد تا روش محاسبه خود را توضیح دهد. به نظر شما این شاگرد باهوش که بعدها یکی از بزرگ ترین و معروف ترین ریاضیدانان دنیا شد.
چه روشی را به کار بست؟ او اعداد یک تا صد را به ردیف پشت سرهم نوشت، سپس بار دیگر همین اعداد را بالعکس، این بار از صدتا یک، درست در ردیف زیرین اعداد قبلی نوشت. طوری که هر عدد زیر عدد ردیف بالاتر قرار گرفت.وی مشاهده کرد که مجموع هر کدام از ستون های به وجود آمده ۱۰۱ است. سپس نتیجه گرفت که صد تا عدد ۱۰۱ داریم که حاصل مجموع آنها می شود ۱۰۱۰۰=۱۰۱*۱۰۰. پس از آن تنها کافی بود که این مجموع به دست آمده نصف شود یعنی:
۵۰۵۰=۲/۱۰۱۰۰
شاید «شارل فردریک گاوس» شاگرد با ذکاوت کلاس که این روش جالب را به کاربرد، آن هنگام نمی دانست، روش بسیار کارا و مفیدی را برای جمع بستن رشته ای از اعداد ارائه داده است که تا سالیان سال مورد استفاده ریاضیدانان خواهد بود.اکثر مفاهیم ریاضی به قدری با زندگی روزمره ما گره خورده است که تمام مردم بدون آگاهی داشتن و واقف بودن به آن، از کنارش می گذرند و تنها کاربر خوبی هستند و بس!
حتماً تا به حال با این عبارات در رادیو، تلویزیون یا موارد مختلف دیگر برخورد کرده اید: «وزارت آب و یا وزارت نیرو اعلام کرده است که میزان پرداختی قبض ها به صورت تصاعدی بالا می رود و از مصرف کنندگان تقاضا نمود که نهایت صرفه جویی را درمصرف آن داشته باشند.» حتماً در بیشتر موارد نیز از اینکه هزینه مصرف آب یا برق شما بسیار گران شده است گله مند و شاکی بوده اید و بسیار تعجب کرده و یا شاید هم فکر کرد ه اید که اشتباهی رخ داده است!
اما در واقع این چنین نبوده است. بلکه این وزارتخانه ها و جاهای دیگر از این قبیل با به کار بردن یک مفهوم ساده ریاضی که از روابط جالب بین اعداد نشات می گیرد، تلاش نموده اند با این روش اندکی از مصرف سرانه انرژی های مفید در کشور بکاهند. بسیاری از رشته های اعداد در ریاضیات از قاعده و قانون خاصی پیروی می کنند. بدین صورت که مثلاً هر عدد نسبت به عدد قبلی خود به اندازه ثابتی کاهش یا افزایش می یابد، به این رشته از اعداد تصاعد «عددی» (حسابی) گویند.
برای مثال در رشته اعداد ۱، ۴، ۷، ۱۰، ۱۳ و ... هر عدد نسبت به عدد قبلی خود سه واحد بیشتر است. حال رشته ای از اعداد را در نظر بگیرید که در آن هر عدد نسبت به عدد ماقبل خود به اندازه توان هایی از یک عدد ثابت افزایش یا کاهش یافته باشد. به این رشته از اعداد تصاعد «هندسی» گویند.
برای مثال رشته اعداد ۱، ۲، ۴، ۸، ۱۶ و... را در نظر بگیرید. اگر کمی دقت کنید متوجه می شوید که هر عدد نسبت به عدد قبلی خود، دو برابر شده است. به عبارت دیگر در این رشته از اعداد با توان هایی از عدد ۲ و یا اعداد دیگر مواجه هستیم.
یعنی :...و۲۴، ۳ ۲، ۲ ۲۲۱۲۰،، به ترتیب از چپ به راست می شود ...و ۱۶، ۸، ۴، ۲۱،
اگر کمی حوصله کنید و با ما همراه باشید مثال ها و داستان های جالبی از خاصیت شگفت آور این رشته از اعداد خواهید خواند که حتماً متعجب می شوید.
در گذشته های دور، یکی از پادشاهان هندوستان به ازای یاد دادن سرگرمی خوبی به او، جایزه بزرگی تعیین کرد. می دانید که هندی ها در ابداع و اختراع روابط شگفت انگیز بین اعداد بسیار توانا هستند و تاریخچه بلندی در این زمینه دارند. روزی یکی از همین دانشمندان متبحر کار با اعداد، نزد پادشاه رفت و بازی شطرنج را به او آموخت. کسی چه می داند، شاید بازی شطرنج از همان زمان اختراع شده باشد.این مرد زیرک به ازای سرگرمی خوبی که به پادشاه آموخته بود از وی خواست تا به ازای ۶۴ خانه شطرنج به او گندم دهد. بدین ترتیب که از یک دانه گندم برای خانه اول آغاز کند و به هر خانه شطرنج که رسید تعداد دانه های گندم را نسبت به خانه قبل دو برابر افزایش دهد.
مثلاً برای روز چهارم پادشاه می بایست تعداد ۱۶=۲۴ دانه گندم به مرد فاضل بدهد. مرد خردمند شرط کرد که در صورت عدم توانایی پرداخت این گندم ها از سوی پادشاه می باید تاج و تخت هندوستان را برای همیشه ترک کند. پادشاه نیز با کمال میل پذیرفت و در دل به بی خردی آن ناشناس خندید. مسلماً در روزهای اول مشکلی وجود نداشت. اما مشکل اصلی از آنجا شروع می شد که این اعداد به صورت شگفت آوری بزرگ می شدند. در روز دهم تعداد ۱۰۲۴=۲۱۰ دانه گندم باید پرداخت می شد که تعداد زیادی نیست. اما روز بیستم تعداد قابل ملاحظه ای می شود یعنی ۵۷۶/۰۴۸/۱=۲۲۰ دانه گندم. فکر می کنید وقتی که به روز آخر یعنی خانه شصت و چهارم برسید چه اتفاقی بیفتد. درست حدس زده اید پادشاه ما به ....=۲۶۴ دانه گندم نیاز دارد که این تعداد گندم با تمام دانه های شن و ماسه موجود بر روی زمین برابری می کند!
در روزهای آخر این شرط تازه پادشاه هند متوجه شد که چه کلاه بزرگی سرش رفته است اما چاره ای جز کناره گیری از تاج و تخت نبود!مثال های بسیاری از این دست موجود است که به قدرت شگرف اعداد و بیشتر از آن به قدرت تفکر انسان هایی که راه سود بردن از آن را بدانند اشاره می کند.





نوع مطلب : مسائل جالب ریاضی، مقالات، 
برچسب ها : نگاهی به کاربرد مفاهیم ساده ریاضی در زندگی روزمره، قدرت اعداد،
لینک های مرتبط :
اگر در کلاس درس شما دانش آموزی مثلث متساوی الساقین را با این املا بنویسد چه حالی به شما دست می دهد . به املای نوشته شده توجه کنید :

مثلث مطاساقیون ساقین!!!!!!!!!!!!!!!!!!!!!

الف: ازخنده روده بر می شوید ؟

ب: از درد به خود می پیچید ؟

ج:خود کشی می کنید ؟

د: نمی دانم؟ جل الخالق

 

منبع:www.mathteach.blogfa.com





نوع مطلب : مسائل جالب ریاضی، 
برچسب ها : این هم مثلث متساوی الساقین،
لینک های مرتبط :
1388/08/3 :: نویسنده : سجاد خسروپور

- به دنبال ایجاد سوء تفاهمی بین پادشاه و وزیر زیرک ، شاه دستور می دهد وزیر را در طول هفته آینده " در روزی که او نمی داند وی را در آن روز می کشند !" ، به قتل برسانند. وزیر پس از شنیدن این دستور ، کمی فکر می کند و سپس میگوید: شما هیچ روزی نمی توانید مرا بکشید!!! پادشاه از او میخواهد که شرح دهد طبق چه استدلالی جلادان نمیتوانند او را بکشند؟ اگر شما جای وزیر باهوش باشید چه پاسخی می دهید؟!!!

 

 

 



پاسخ مساله


نوع مطلب : مسائل جالب ریاضی، 
برچسب ها : وزیر و پادشاه!!،
لینک های مرتبط :

پدری از دو پسر تیزهوش خود می خواهد که هر کدام یک عدد انتخاب نمایند و بدون آنکه دیگری متوجه شود، عدد خود را به او بگویند. پدر بعد از شنیدن اعداد میگوید: حاصلضرب دو عددی که آنها انتخاب کرده اند، 8 یا 16 می باشد. سپس از پسر بزرگتر سئوال می کند: " آیا میدانی عددی که برادرت انتخاب کرده است چند می باشد؟"
پسر بزرگ: " نمی دانم! "
پدر از پسر کوچکتر همین سئوال را می پرسد.
پسرکوچک : " نمی دانم! "
پدر از پسر بزرگ مجددا همین سئوال را می پرسد.
پسر بزرگ: " نمی دانم! "
پدر از پسر کوچک مجددا همین سئوال را می پرسد.
پسرکوچک : " نمی دانم! "
پدر از پسر بزرگ بازهم همین سئوال را می پرسد.
پسر بزرگ: " می دانم! "
شما می دانید عددی که پسر کوچک انتخاب نموده است چند است؟




ادامه مطلب


نوع مطلب : مسائل جالب ریاضی، 
برچسب ها : پدر و دو پسر تیزهوشش،
لینک های مرتبط :
1388/08/3 :: نویسنده : سجاد خسروپور

آمارگیری

- یه آمار گیر میره در یه خونه ای و راجع به خودش و بچه هاش سوال میکنه.

طرف میگه: "برای سن بچه هام یه معما میگم باید حلش کنی تا سنشون رو پیدا کنی. من سه پسر دارم که حاصل ضرب سن اونا میشه 36 و حاصل جمع سنشون 2 تا از شماره پلاک همسایه سمت راستی کمتره".

آمار گیره یه خورده فکر میکنه و میگه: "با این اطلاعات نمیتونم حلش کنم میشه یه راهنمایی بکنین".

صابخونه میگه: "پسر بزرگترم حلوا شکری عقاب خیلی دوست داره!!!" و آمارگیره مساله رو حل میکنه.

 حالا شما میتونین بگین سن بچه ها به ترتیب چند بوده؟

اگه اعدادی که حاصل ضربشون میشه 36 رو بنویسین میشه این لیست:
1  1  36 -> که حاصل جمعشون میشه 38
1  2  18 -> 21
1  3  12 -> 16
1  4  9  -> 14
1  6  6  -> 13 
*
2  2  9  -> 13 
*
2  3  6  -> 11
3  3  4  -> 10

آمارگیر پلاک خونه همسایه رو میدیده ولی گفته با این اطلاعات نمیتونه حلش کنه. پس حتما ابهامی تو قضیه بوده و این ابهام تنها از دو سری 1 6 6 و 2 2 9  ناشی میشه که جمع هر دو 13 میشه. حالا از این که صابخونه گفته "پسر بزرگترم" میتونیم نتیجه بگیریم که از بین پسراش یه پسری باید سنش از همه بیشتر باشه و یعنی دوقلو نداشته باشه. پس جواب میشه 2 2 9.
 به جای حلوا شکری عقاب هم هر چیز دیگه ای میتونه باشه. 





نوع مطلب : مسائل جالب ریاضی، 
برچسب ها : آمارگیری،
لینک های مرتبط :


( کل صفحات : 2 )    1   2   
آمار وبلاگ
  • کل بازدید :
  • بازدید امروز :
  • بازدید دیروز :
  • بازدید این ماه :
  • بازدید ماه قبل :
  • تعداد نویسندگان :
  • تعداد کل پست ها :
  • آخرین بازدید :
  • آخرین بروز رسانی :









Free PageRank Checker